Survey of differentially methylated promoters in prostate cancer cell lines.

 

Yipeng Wang1, Qiuju Yu1, Ann H Cho1, Gaelle Rondeau1, John Welsh1, Eileen Adamson2, Dan Mercola1, and Michael McClelland1

 

1. Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, California, 92121, USA

2. The Burnham Institute, Cancer Research Center, La Jolla, California, USA

 

Correspondence should be addressed to M McClelland, Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, California, 92121, USA. E-mail: mmcclelland@sdibr.org.

 

ABSTRACT

 

DNA methylation and copy number in the genomes of three immortalized prostate epithelial, and five cancer cell lines, LNCaP, PC3, PC3M, PC3M-Pro4 and PC3M-LN4, were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, PCR amplification, labeling, and hybridizion to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight; CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY, previously observed in prostate cancer, and 13 previously known methylation targets in other cancers; ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1. The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes to study the role of DNA methylation in prostate tumors.

 

Table 1. Primers for methylation-specific semi-quantitiative PCR

 

RefSeq ID

Gene Symbol

Expresssion Ratio (log2)

Primer Information a

Putative hypermethylated promoters in PC3M relative to 267B1

NM_000082

CKN1

-0.75

M-FW: GTTAATTTTCGAGAAAGGAATTAGC

RW: AAAATATCTTCAACGCCTCGAC

U-FW: ATGTTAATTTTTGAGAAAGGAATTAGTG

RW: AAAAAAAATATCTTCAACACCTCAAC

NM_001008

RPS4Y b

-6.36

M-FW: GTTATTTAGGTTGGAGTGTAGTGGC

RW: GAATCACGAAATCAAAAAATCG

U-FW: GTTATTTAGGTTGGAGTGTAGTGGTG

RW: CAAATCACAAAATCAAAAAATCAAA

NM_003118

SPARC b,c

-7.16

M-FW: GATATTTTCGTTTACGTCGTTAGTTC

RW: AAAAAATAAAAAAATACTCCCCCG

U-FW: GATATTTTTGTTTATGTTGTTAGTTTGT

RW: AAAAATAAAAAAATACTCCCCCAAA

NM_003206

TCF21

NA

M-FW: AATATGTTTATCGGTTTTTTTAGCG

RW: TTAAAACTCTCCTCGATACTCTCGT

U-FW: TTTAAATATGTTTATTGGTTTTTTTAGTGA

RW: CAATTAAAACTCTCCTCAATACTCTCATT

NM_003999

OSMR

-2.52

M-FW: ATTTTGGTTAATACGGTGAAATTTC

RW: CCAAACTAAAATACAATAACGCGAT

U-FW: TTTTGGTTAATATGGTGAAATTTTGT

RW: TCACCCAAACTAAAATACAATAACACA

NM_004701

CCNB2

-1.78

M-FW: GTTAAAATTTAGAGGCGTTTTACGT

RW: ACGTTTAATTATCACAACAACCGAT

U-FW: TTTTGTTAAAATTTAGAGGTGTTTTATGT

RW: CACATTTAATTATCACAACAACCAAT

NM_005509

DMXL1

-1.37

M-FW: ATTTCGTTTAGGGATTTGGAAATAC

RW: AAACTACAAATCCCAATATACACCG

U-FW: TTTTGTTTAGGGATTTGGAAATATG

RW: AAACTACAAATCCCAATATACACCACT

NM_005732

RAD50

-2.69

M-FW: ATTTTTTTGATTTTGAGATTCGC

RW: GATCCGAAACATATTTACAAACGTT

U-FW: ATTTTTTTGATTTTGAGATTTGTGG

RW: TCAATCCAAAACATATTTACAAACATT

NM_005983

SKP2

-1.72

M-FW: TATTTCGTGGGTCGATTAGTTTC

RW: ACTAAAAATTATAATTTCCGTCCCG

U-FW: TATTTTGTGGGTTGATTAGTTTTGT

RW: ACTAAAAATTATAATTTCCATCCCACT

NM_006479

PIR51

-1.97

M-FW: GTATAAATTCGGTTTTGGTGGATC

RW: CAAATTCTTATTAACTTCAACGACGA

U-FW: GTATAAATTTGGTTTTGGTGGATTG

RW: TTCTCAAATTCTTATTAACTTCAACAACA

NM_014350

GG2-1

-1.94

M-FW: GTTTGGAGTATTAGTGTTCGTTCG

RW: CGAAACCTTTTAAAAAAAATAAAACG

U-FW: GTTTGGAGTATTAGTGTTTGTTTGG

RW: CAAAACCTTTTAAAAAAAATAAAACAAC

NM_021025

TLX3

NA

M-FW: GTTGTGGTTCGGGTTTTAATATTC

RW: CTACCGCAACCATTAACTACGAT

U-FW: GTTGTGGTTTGGGTTTTAATATTTG

RW: TCCTACCACAACCATTAACTACAAT

NM_024501

HOXD1

-1.61

M-FW: TTTTAGTGAAAGTAAGCGTCGTATC

RW: CTATCCCTCGCAATTTATAACGA

U-FW: TTTTTAGTGAAAGTAAGTGTTGTATTGG

RW: TCTTCTATCCCTCACAATTTATAACAAC

Putative hypomethylated promoters in PC3M relative to 267B1

NM_006142

SFN c

5.60

M-FW: TAAGTTGGTAGAGTAGGTCGAACGT

RW: CTAAAAACAAATTTCGCTCTTCG

U-FW: GGTTAAGTTGGTAGAGTAGGTTGAATG

RW: CTACTAAAAACAAATTTCACTCTTCACA

a M: primer designed to amplify methylated DNA; U: primer designed to amplify unmethylated DNA.

b Gene that does not have CpG island within the amplified promoter region.

c Gene already been known as methylation target in cancer.

 

 

 

Table 2. Differential amplified HpaII fragment hybridization in prostate cancer cell lines among genes known to be methylation targets in cancer.

 

RefSeq ID

Gene Symbol

Tumor Type

Reference

NM_004675

ARHI

Breast cancer

(1)

NM_000633

bcl-2

Colorectal carcinoma

(2)

NM_007296

BRCA1

Breast cancer

Ovarian cancer

Cervical cancer

(3-5)

NM_000610

CD44

Prostate cancer

Colorectal cancer

Neuroblastoma

Gastric cancer

(6-13)

NM_000389

CDKN1A

Prostate cancer

Lymphoma

Leukemia

(14-17)

NM_001262

CDKN2C

Hodgkin lymphomas

(18).

NM_000125

ESR1

Prostate cancer

Colorectal cancer

Breast cancer

Lung cancer

(3,19-22)

NM_001924

GADD45A

Breast cancer

(23)

NM_002451

MTAP

Malignant melanoma

(24)

NM_000926

PGR

Breast cancer,

Cervical cancer

(25,26)

NM_002658

PLAU

Prostate cancer

Breast cancer

(27,28)

NM_000965

RARB

Prostate cancer

Testicular lymphoma

Cervical cancer

Breast Cancer

colorectal cancers

(29-33)

NM_006142

SFN

Prostate cancer

Overian cancer

Skin cancer

Lung cancer

Oral cancer

Vulval cancer

Gastric cancer

Breast cancer

(34-41)

NM_000441

SLC26A4

Thyroid tumorigenesis

(42)

NM_003118

SPARC

Pancreatic cancer

(43)

NM_003177

SYK

Breast cancer

Gastric cancer

Overian cancer

T-lineage acute lymphoblastic leukemia

(44-47)

NM_004817

TJP2

Pancreatic cancer

(48)

NM_000043

TNFRSF6

Prostate cancer

Bladder cancer

(49)

NM_003308

TSPY

Prostate cancer

(50)

NM_004181

UCHL1

Pancreatic cancer

(48)

NM_015855

WIT-1

Acute myeloid leukemia

(51)

 

 

References in Table 2

 

1.         Yuan, J, Luo, RZ, Fujii, S, Wang, L, Hu, W, Andreeff, M, Pan, Y, Kadota, M, Oshimura, M, Sahin, AA et al. (2003). Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers Cancer Res, 63, 4174-4180.

2.         Babidge, WJ, Butler, LM, Burton, MA and Cowled, PA. (2001). Methylation of CpG sites in exon 2 of the bcl-2 gene occurs in colorectal carcinoma Anticancer Res, 21, 2809-2814.

3.         Parrella, P, Poeta, ML, Gallo, AP, Prencipe, M, Scintu, M, Apicella, A, Rossiello, R, Liguoro, G, Seripa, D, Gravina, C et al. (2004). Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors Clin Cancer Res, 10, 5349-5354.

4.         Narayan, G, Arias-Pulido, H, Nandula, SV, Basso, K, Sugirtharaj, DD, Vargas, H, Mansukhani, M, Villella, J, Meyer, L, Schneider, A et al. (2004). Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer Cancer Res, 64, 2994-2997.

5.         Wang, C, Horiuchi, A, Imai, T, Ohira, S, Itoh, K, Nikaido, T, Katsuyama, Y and Konishi, I. (2004). Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene J Pathol, 202, 215-223.

6.         Kito, H, Suzuki, H, Ichikawa, T, Sekita, N, Kamiya, N, Akakura, K, Igarashi, T, Nakayama, T, Watanabe, M, Harigaya, K et al. (2001). Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer Prostate, 49, 110-115.

7.         Lou, W, Krill, D, Dhir, R, Becich, MJ, Dong, JT, Frierson, HF, Jr., Isaacs, WB, Isaacs, JT and Gao, AC. (1999). Methylation of the CD44 metastasis suppressor gene in human prostate cancer Cancer Res, 59, 2329-2331.

8.         Verkaik, NS, Trapman, J, Romijn, JC, Van der Kwast, TH and Van Steenbrugge, GJ. (1999). Down-regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation Int J Cancer, 80, 439-443.

9.         Verkaik, NS, van Steenbrugge, GJ, van Weerden, WM, Bussemakers, MJ and van der Kwast, TH. (2000). Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region Lab Invest, 80, 1291-1298.

10.       Woodson, K, Hayes, R, Wideroff, L, Villaruz, L and Tangrea, J. (2003). Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites Prostate, 55, 199-205.

11.       Stallmach, A, Wittig, BM, Kremp, K, Goebel, R, Santourlidis, S, Zeitz, M, Menges, M, Raedle, J, Zeuzem, S and Schulz, WA. (2003). Downregulation of CD44v6 in colorectal carcinomas is associated with hypermethylation of the CD44 promoter region Exp Mol Pathol, 74, 262-266.

12.       Yan, P, Muhlethaler, A, Bourloud, KB, Beck, MN and Gross, N. (2003). Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma Genes Chromosomes Cancer, 36, 129-138.

13.       Sato, S, Yokozaki, H, Yasui, W, Nikai, H and Tahara, E. (1999). Silencing of the CD44 gene by CpG methylation in a human gastric carcinoma cell line Jpn J Cancer Res, 90, 485-489.

14.       Konishi, N, Nakamura, M, Kishi, M, Nishimine, M, Ishida, E and Shimada, K. (2002). DNA hypermethylation status of multiple genes in prostate adenocarcinomas Jpn J Cancer Res, 93, 767-773.

15.       Konishi, N, Nakamura, M, Kishi, M, Nishimine, M, Ishida, E and Shimada, K. (2002). Heterogeneous methylation and deletion patterns of the INK4a/ARF locus within prostate carcinomas Am J Pathol, 160, 1207-1214.

16.       Go, JH. (2003). Methylation analysis of cyclin-dependent kinase inhibitor genes in primary gastrointestinal lymphomas Mod Pathol, 16, 752-755.

17.       Roman-Gomez, J, Castillejo, JA, Jimenez, A, Gonzalez, MG, Moreno, F, Rodriguez Mdel, C, Barrios, M, Maldonado, J and Torres, A. (2002). 5' CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia Blood, 99, 2291-2296.

18.       Sanchez-Aguilera, A, Delgado, J, Camacho, FI, Sanchez-Beato, M, Sanchez, L, Montalban, C, Fresno, MF, Martin, C, Piris, MA and Garcia, JF. (2004). Silencing of the p18INK4c gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas Blood, 103, 2351-2357.

19.       Yegnasubramanian, S, Kowalski, J, Gonzalgo, ML, Zahurak, M, Piantadosi, S, Walsh, PC, Bova, GS, De Marzo, AM, Isaacs, WB and Nelson, WG. (2004). Hypermethylation of CpG islands in primary and metastatic human prostate cancer Cancer Res, 64, 1975-1986.

20.       Li, LC, Shiina, H, Deguchi, M, Zhao, H, Okino, ST, Kane, CJ, Carroll, PR, Igawa, M and Dahiya, R. (2004). Age-dependent methylation of ESR1 gene in prostate cancer Biochem Biophys Res Commun, 321, 455-461.

21.       Belshaw, NJ, Elliott, GO, Williams, EA, Bradburn, DM, Mills, SJ, Mathers, JC and Johnson, IT. (2004). Use of DNA from human stools to detect aberrant CpG island methylation of genes implicated in colorectal cancer Cancer Epidemiol Biomarkers Prev, 13, 1495-1501.

22.       Marchevsky, AM, Tsou, JA and Laird-Offringa, IA. (2004). Classification of individual lung cancer cell lines based on DNA methylation markers: use of linear discriminant analysis and artificial neural networks J Mol Diagn, 6, 28-36.

23.       Wang, W, Huper, G, Guo, Y, Murphy, SK, Olson, JA and Marks, JR. (2005). Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer Oncogene, 24, 2705-2714.

24.       Behrmann, I, Wallner, S, Komyod, W, Heinrich, PC, Schuierer, M, Buettner, R and Bosserhoff, AK. (2003). Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma Am J Pathol, 163, 683-690.

25.       Widschwendter, A, Muller, HM, Fiegl, H, Ivarsson, L, Wiedemair, A, Muller-Holzner, E, Goebel, G, Marth, C and Widschwendter, M. (2004). DNA methylation in serum and tumors of cervical cancer patients Clin Cancer Res, 10, 565-571.

26.       Widschwendter, M, Siegmund, KD, Muller, HM, Fiegl, H, Marth, C, Muller-Holzner, E, Jones, PA and Laird, PW. (2004). Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen Cancer Res, 64, 3807-3813.

27.       Xing, RH and Rabbani, SA. (1999). Transcriptional regulation of urokinase (uPA) gene expression in breast cancer cells: role of DNA methylation Int J Cancer, 81, 443-450.

28.       Pakneshan, P, Xing, RH and Rabbani, SA. (2003). Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo Faseb J, 17, 1081-1088.

29.       Yamamoto, H, Min, Y, Itoh, F, Imsumran, A, Horiuchi, S, Yoshida, M, Iku, S, Fukushima, H and Imai, K. (2002). Differential involvement of the hypermethylator phenotype in hereditary and sporadic colorectal cancers with high-frequency microsatellite instability Genes Chromosomes Cancer, 33, 322-325.

30.       Farias, EF, Arapshian, A, Bleiweiss, IJ, Waxman, S, Zelent, A and Mira, YLR. (2002). Retinoic acid receptor alpha2 is a growth suppressor epigenetically silenced in MCF-7 human breast cancer cells Cell Growth Differ, 13, 335-341.

31.       Narayan, G, Arias-Pulido, H, Koul, S, Vargas, H, Zhang, FF, Villella, J, Schneider, A, Terry, MB, Mansukhani, M and Murty, VV. (2003). Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome Mol Cancer, 2, 24.

32.       Kawakami, T, Okamoto, K, Kataoka, A, Koizumi, S, Iwaki, H, Sugihara, H, Reeve, AE, Ogawa, O and Okada, Y. (2003). Multipoint methylation analysis indicates a distinctive epigenetic phenotype among testicular germ cell tumors and testicular malignant lymphomas Genes Chromosomes Cancer, 38, 97-101.

33.       Singal, R, Ferdinand, L, Reis, IM and Schlesselman, JJ. (2004). Methylation of multiple genes in prostate cancer and the relationship with clinicopathological features of disease Oncol Rep, 12, 631-637.

34.       Urano, T, Takahashi, S, Suzuki, T, Fujimura, T, Fujita, M, Kumagai, J, Horie-Inoue, K, Sasano, H, Kitamura, T, Ouchi, Y et al. (2004). 14-3-3sigma is down-regulated in human prostate cancer Biochem Biophys Res Commun, 319, 795-800.

35.       Kaneuchi, M, Sasaki, M, Tanaka, Y, Shiina, H, Verma, M, Ebina, Y, Nomura, E, Yamamoto, R, Sakuragi, N and Dahiya, R. (2004). Expression and methylation status of 14-3-3 sigma gene can characterize the different histological features of ovarian cancer Biochem Biophys Res Commun, 316, 1156-1162.

36.       Lodygin, D, Yazdi, AS, Sander, CA, Herzinger, T and Hermeking, H. (2003). Analysis of 14-3-3sigma expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma Oncogene, 22, 5519-5524.

37.       Osada, H, Tatematsu, Y, Yatabe, Y, Nakagawa, T, Konishi, H, Harano, T, Tezel, E, Takada, M and Takahashi, T. (2002). Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers Oncogene, 21, 2418-2424.

38.       Gasco, M, Bell, AK, Heath, V, Sullivan, A, Smith, P, Hiller, L, Yulug, I, Numico, G, Merlano, M, Farrell, PJ et al. (2002). Epigenetic inactivation of 14-3-3 sigma in oral carcinoma: association with p16(INK4a) silencing and human papillomavirus negativity Cancer Res, 62, 2072-2076.

39.       Gasco, M, Sullivan, A, Repellin, C, Brooks, L, Farrell, PJ, Tidy, JA, Dunne, B, Gusterson, B, Evans, DJ and Crook, T. (2002). Coincident inactivation of 14-3-3sigma and p16INK4a is an early event in vulval squamous neoplasia Oncogene, 21, 1876-1881.

40.       Umbricht, CB, Evron, E, Gabrielson, E, Ferguson, A, Marks, J and Sukumar, S. (2001). Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer Oncogene, 20, 3348-3353.

41.       Suzuki, H, Itoh, F, Toyota, M, Kikuchi, T, Kakiuchi, H and Imai, K. (2000). Inactivation of the 14-3-3 sigma gene is associated with 5' CpG island hypermethylation in human cancers Cancer Res, 60, 4353-4357.

42.       Xing, M, Tokumaru, Y, Wu, G, Westra, WB, Ladenson, PW and Sidransky, D. (2003). Hypermethylation of the Pendred syndrome gene SLC26A4 is an early event in thyroid tumorigenesis Cancer Res, 63, 2312-2315.

43.       Sato, N, Fukushima, N, Maehara, N, Matsubayashi, H, Koopmann, J, Su, GH, Hruban, RH and Goggins, M. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions Oncogene, 22, 5021-5030.

44.       Yuan, Y, Liu, H, Sahin, A and Dai, JL. (2004). Reactivation of SYK expression by inhibition of DNA methylation suppresses breast cancer cell invasiveness Int J Cancer.

45.       Wang, S, Ding, YB, Chen, GY, Xia, JG and Wu, ZY. (2004). Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma World J Gastroenterol, 10, 1815-1818.

46.       Dhillon, VS, Young, AR, Husain, SA and Aslam, M. (2004). Promoter hypermethylation of MGMT, CDH1, RAR-beta and SYK tumour suppressor genes in granulosa cell tumours (GCTs) of ovarian origin Br J Cancer, 90, 874-881.

47.       Goodman, PA, Burkhardt, N, Juran, B, Tibbles, HE and Uckun, FM. (2003). Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia Oncogene, 22, 2504-2514.

48.       Sato, N, Fukushima, N, Maitra, A, Matsubayashi, H, Yeo, CJ, Cameron, JL, Hruban, RH and Goggins, M. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays Cancer Res, 63, 3735-3742.

49.       Santourlidis, S, Warskulat, U, Florl, AR, Maas, S, Pulte, T, Fischer, J, Muller, W and Schulz, WA. (2001). Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor kappaB sites in prostatic carcinoma Mol Carcinog, 32, 36-43.

50.       Dasari, VK, Deng, D, Perinchery, G, Yeh, CC and Dahiya, R. (2002). DNA methylation regulates the expression of Y chromosome specific genes in prostate cancer J Urol, 167, 335-338.

51.       Plass, C, Yu, F, Yu, L, Strout, MP, El-Rifai, W, Elonen, E, Knuutila, S, Marcucci, G, Young, DC, Held, WA et al. (1999). Restriction landmark genome scanning for aberrant methylation in primary refractory and relapsed acute myeloid leukemia; involvement of the WIT-1 gene Oncogene, 18, 3159-3165.

 

 

 

Table 3. Promoters that show large differences in both HpaII fragment amplficiation and RNA expression, between PC3M and 267B1

 

RefSeq ID

Gene Symbol

Gene Full Name

Expresssion Ratio a

Genes with reduced HpaII fragment hybridization in PC3M (candidate hypermethylated genes)

NM_000138

NM_000546

NM_000985

NM_001008

NM_001790

NM_002082

NM_002749

NM_003118

NM_003714

NM_003999

NM_004472

NM_004663

NM_004701

NM_005509

NM_005732

NM_005983

NM_006282

NM_006479

NM_012382

NM_014621

NM_018163

NM_018268

NM_024501

NM_024558

NM_024796

NM_033028

NM_133338

NM_006194

NM_053001

FBN1

TP53

RPL17

RPS4Y b

CDC25C

GPRK6

MAPK7

SPARC b

STC2

OSMR

FOXD1 b

RAB11A

CCNB2

DMXL1

RAD50

SKP2

STK4

PIR51

OSRF

HOXD4

FLJ10634

FLJ10904

HOXD1

C14orf138

FLJ22639

BBS4

RAD17

PAX9 c

OSR2 c

fibrillin 1

tumor protein p53

ribosomal protein L17

ribosomal protein S4, Y-linked Y isoform

cell division cycle 25C protein, isoform a

G protein-coupled receptor kinase 6

mitogen-activated protein kinase 7 isoform 1

secreted protein, acidic, cysteine-rich (osteonectin)

stanniocalcin 2

oncostatin M receptor

forkhead box D1

RAB11A, member RAS oncogene family

cyclin B2

Dmx-like 1

RAD50 homolog isoform 1

S-phase kinase-associated protein 2 isoform 1

serine/threonine kinase 4

RAD51-interacting protein

osmosis responsive factor

homeo box D4

hypothetical protein FLJ10634

hypothetical protein FLJ10904

homeo box D1

hypothetical protein FLJ13920

hypothetical protein FLJ22639

Bardet-Biedl syndrome 4

RAD17 homolog isoform 1

paired box gene 9

odd-skipped-related 2A protein

-5.21

-4.66

-1.17

-6.36

-2.29

-1.76

-1.62

-4.28

-1.42

-2.52

-2.68

-1.13

-1.78

-1.37

-2.69

-1.47

-1.36

-1.97

-2.36

-3.07

-1.66

-4.17

-1.61

-1.56

-1.00

-1.54

-1.63

2.55

1.43

Genes with increased HpaII fragment hybridization in PC3M (candidate hypomethylated genes)

NM_001123

NM_002290

NM_002467

NM_002658

NM_004693

NM_005555

NM_006142

NM_030759

NM_032804

NM_018649

NM_020177

ADK

LAMA4

MYC

PLAU

K6HF b

KRT6B b

SFN

NRBF-2

FLJ14547

H2AFY2 c

FEM1C c

adenosine kinase isoform a

laminin, alpha 4 precursor

v-myc myelocytomatosis viral oncogene homolog

plasminogen activator, urokinase

cytokeratin type II

keratin 6B

stratifin

nuclear receptor binding factor-2

hypothetical protein FLJ14547

core histone macroH2A2.2

 feminization 1 homolog a

1.69

2.11

2.51

1.75

9.27

1.10

5.60

1.45

2.39

-2.02

-1.30

 

a Ratios: log2(PC3M/267B1)

b Promoter does not have CpG island within the amplified promoter region.

c Promoter where HpaII fragment hybridization was not correlated with RNA expression level.

 

 

 

Figure 1. Schematic of the protocol for detecting differences in HpaII fragment amplification between samples.

 

 

 

Figure 2. Estimation of data reproducibility and significance of differences. M: log base 2 ratio of each spot after print-tip loess normalization and scale between-array normalization. A: average of two channels’ log intentisies of each spot; a measurement of the overall brightness of the spot. All data involes at least six arrays. The p value is for the moderated t-test. Figure 2A: M-A plot, hybridization of amplified HpaII fragments from 267B1 vs. 267B1; Figure 2B: M-p plot, hybridization of amplified HpaII fragments from 267B1 vs. 267B1. Figure 2C: M-A plot, hybridization of amplified HpaII fragments from PC3M vs. 267B1; Figure 2D: M-p plot, hybridization of amplified HpaII fragments from PC3M vs. 267B1.

 

 

 

Figure 3. Detection of DNA methylation changes using methylation-specific semi-quantitative PCR. Fourteen promoters that displayed possible differential methylation in the array assay between 267B1 and PC3M (see Table 1) were investigated by methylation-specific semi-quantative PCR. The proportion of methylation for each promoter is calculated.

 

 

 

Figure 4. Hierarchical Cluster of hybridized amplified HpaII fragments for eight cell lines. Figure 4A: 504 promoters that are statistical differentially hybridized between at least one of the five prostate cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3M-LN4) and at least one of the three relative normal prostate cell lines (RWPE-1, 267B1, Mlcsv40) are shown. The normalized hybridization ratios of these cell lines relative to RWPE-1 were used for hierarchical clustering. Red indicates higher HpaII fragment hybridization relative to RWPE-1, which usually indicates less methylation or a higher copy number. Green indicates lower hybridization, which usually indicates greater methylation or a lower copy number. Figure 4B: Clustering for 21 genes known to be regulated in cancer.

Figure 4A

Figure 4B

 

 

 

 

 

Figure 5. Comparison of amplified HpaII fragment data to Affymetrix RNA expression data. Decreases in signal from HpaII fragments (which is usually due to an increase in DNA methylation) between cell lines are generally associated with a decrease in RNA expression. The upper right quadrant contains genes with higher RNA expression in PC3M than in 267B1 and higher yield of HpaII fragments, in PC3M. The lower left quadrant contains genes with lower RNA expression in PC3M than in 267B1 and also lower yield of HpaII fragment hybridization in PC3M.

 

 

 

 

Figure 6. Effects of methylation inhibitor (5-aza-2’-deoxycytidine, DAC) on methylation status of LNCaP. M-p plots, HpaII fragment hybridization pattern of LNCaP before and after treated with DAC. M: log base 2 ratio of each spot after composite normalization and scale between-array normalization. The p value is from a moderated t-test. Figure 6A: M-p plot for all promoters; Figure 6B: M-p plot for 191 promoters putatively hyper-methylated in LNCaP relative to at least one of the three normal prostate cell lines.

 

 

 

Figure 7. DNA copy number changes measured by CGH on promoter array. Figure 7A-C: normalized HpaII fragment hybridization ratios for three different prostate cancer cell lines compared to 267B1 plotted against the relative chromosomal position of each promoter. Figure 7A: LNCaP; Figure 7B: PC3; Figure 7C: PC3M. Figure 7D: PC3M (MspI-ligation-PCR), compared to 267B1 (MspI-ligation-PCR), against chromosomal position; Figure 7E: PC3M (RNA expression level), compared to 267B1 RNA expression level, against chromosomal position.

 

 

Supplement A. Differential hybridization of amplified HpaII frangments between prostate cancer cell lines.

Html Version

Excel Version

Text Version

Supplement B. Promoter Array Gene List.
Html Version
Excel Version
Text Version

Supplement Table W1.
Html Version
Excel Version
Text Version